
 

Lecture9: 

Example: consider the Sine-Gordon equation 
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we seek a solution of the form txtxtxu   ),(),( ,which corresponding to a 

wave travelling with a velocity   and then, substitute in equation(31) to 

obtain an ODE for   in the form 
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this equivalently 
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that is ; 
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where  is integral constant. Solving for 




d

d
 gives a first-order ODE 
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we can separate the variable and then integrated to obtain 
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where 21 VA   . This result depends on the two parameters )),(( cVorV   the 

velocity of the solution and   an integrating constant. 
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when 1A , a solitary wave solution exists for any velocity ))0((10 corV   . 

To simplify both sides of equation (6*) by using trigonometric identities, we have 
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This lends to the solution of )( as; 
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  and 0
  are constants of integration, which can be incorporated in 

several ways. when choose 1  and 0
0
  to obtain one simple solitary wave 

solution for ),( txu  in the form; 

                                      )(tan4),(
211 V

Vtx

etxu 



                                           (38) 

this is called soliton((kink)) solution of sine Gordon equation and represents  a 

continuous profile with ,,0  xasu and ,2u  as 

x shown in the following figure. 

                                                                        

 

 

 

 

         the solution properties in the positive x direction with velocity .V  

),( txu
2

soliton

antisoliton




